
November 1989

NASA-CR-194818

UILU-ENG-89-2239

CSG-115

COORDINATED SCIENCE LABORATORY
College of Engineering

PARAGRAPH: A
GRAPHICS TOOL
FOR PERFORMANCE
AND RELIABILITY
ANALYSIS

Kevin Douglas Lee

(NASA-CR-19481_) PARAGRAPH: A N94-713_5

GPAPHICS TOOL FOR PERFORMANCE AND

RELIABILITY ANALYSIS M.S. Thesis

(Illinois Univ.) 51 p Unclas

Z9/61 0201486

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

W

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSlFICATK)N I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZAnON REPORT NUMBER(S)

UILU-ENG-89-2239

_. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

6c ADDRESS (Oty, State, and ZlPCode)

ii01 W. Springfield Avenue

Urbana, IL 61801

88. NAME OF FUNDING / SPONSORING

ORGANIZATION

NASA

8c. ADDRESS (City, SMte, and ZIP COde)

see 7b

11. TITLE (Inclua_ Securi_ Cl_u_fication)

PARAGRAPH: A Graphics Tool

12. PEI_SONAL AUTHOR(S)

13a. TYPE OF REPORT

Technical

16. SUPPLEMENTARY NOTATION

(CSG-IIS)

6b. OFFICE SYMBOL

(/f ape/cab/e)

N/A

8b. OFFICE SYMBOL

(/f a_¢abte)

lb. RESTRICTIVE MARKINGS

None
3. DISTRIBUTION/AVAILABIUTY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

NASA

7b. ADDRESS (Oty, State, and ZIP Code)

NASA-AMES Research Center

Moffett Field, CA 94035

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NASA AMES NCA2-385

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

for Performance and Reliability Analysis

Lee, Kevin Douglas

13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) _S. PAGE COUNT

FROM TO November, 1989 I 50

WORK UNIT
ACCESSION NO.

17 COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS(Conttnueonm_rJeifne_ua_ mndidenti_by_ocknumbed

multi-level simulation, graphics, animation, interviews,

X-windows

!9. ABSTRACT (Cont/nue o"1 revers@ if necessary and k_m_ by block numbed

PARAGRAPH is an animated graphics display package. It consists of

two parts: an interface to CSIM (a process based simulation language)
and a graphic display system. When a simulation model is executed

on CSIM the interface collects pertinent performance analysis data and

writes them to a file. This file is then fed to the graphic display
system which depicts the execution of the simulation model visually.

This report focuses on the graphical display system. Specifically it

describes the user interface and features of the display system. It

also explains how Interviews (which is based on X-windows) is used
as the basis for the design of PARAGRAPH. The last section contains

an example inwhich a basicload balancingsimulationmodel isused

to demonstrate the features and the capability of PARAGRAPH.

20. DISTRIBUTION IAVAILARIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIEDAJNLIMITED 0 SAME AS RPT. [] DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (/nc/ude Area Code) 22¢. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLASSIFIED

UNCLASSIFIED ,=
|'I[GUAITY ¢I.A&IIIrlCATION OF_ TNIII PAQE

. I_NC_ASSIFIED
J

SECURITY CLASSIFICATION OF THIS PAG Ir

PARAGRAPH: A GRAPHICS TOOL

FOl"¢ PEI_FOR.MANCE AND RELIABILITY ANALYSIS

BY

KEVIN DOUGLAS LEE

B.S., Purdue University, 1987

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois

Funda /or She auppor_ o/ thi, ,tudy haee been allo©aled by the NASA-Ame ReJearch Center, MoMet_ Field,

California, under Interchange No. NCAP,.$85. _

I I

PAGF___LL-- INTENTIONALLYBLANK
iii

ACKNOWLEDGEMENTS

I would like to thank Professor Iyer for his excellent guidance and encouragement. I

would also like to thank my parents, Franklin and Rita Lee, and also Kumar Goswami

for all of their help and support. A very special thanks goes to Anna Lam, my partner

for life.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION

2 BACKGROUND -

2.1 Previous Work

2.2 Graphic Viewing Package

USER INTERFACE

3.1 Windows

3.2 Menus

3.2.1 Main menu

3.2.2 Node menu

4 DESIGN

4.1 Classes

4.2 Data Structures

3

3

5

6

6

i0

I0

13

21

22

24

V

4.3 Communication Messages

4.3.1 Detailed level

4.3.2 Network level

4.4 Faults

26

27

28

29

5 A LOAD BALANCING SIMULATION 35

6 CONCLUSIONS 41

REFERENCES 42

vi

LIST OF FIGURES

FIGURE PAGE

3.1: Program Flow Chart 14

3.2: Window Hierarchy ; 15

3.3: An Example of a Single Bus Network Level Window 15

3.4: An Example of a Hypercube Network Level Window 16

3.5: An Example of a Physical Level Window 17

3.6: An Example of a Detailed Level Window 17

3.7: Main Menu 18

3.8: Speed Selection Dialog Box 18

3.9: Select Ranges Submenu 18

vii

3.10:An Example of a Range Selection Dialog Box 19

3.11: Redisplay Window Submenu 19

3.12: Communications On/Off Submenu 19

3.13: Open/Close Windows Submenu 20

3.14: Smallnode Menu 2O

3.15: Smallnode Facilities Display Submenu 20

4.1: An Example of a CPU Facility 31

4.2: An Example of a Process 31

4.3: An Example of an Mbox 31

4.4: An Example of a Smallnode 32

4.5: An Example of Detailed Level Communication Graphic Object Place-

ment 32

4.6: Network Level Single Bus Communication Graphic Object Placement

4.7: Network Level Hypercube Communication Graphic Object Placement

5.1: Arrival bf a New Job

5.2: Broadcasting a Mean Queue Length

33

34

38

38

o*l

Vlll

5.3: Transfer of a Job 39

5.4: Load Balancing Physical Level 4O

CHAPTERI

INTRODUCTION

Evaluating the performance of complex systems is a critical step in the design and

planning of such systems. Design evaluation is often based on a performance model

of the system. Several special purpose modeling languages have been developed to aid

the performance evaluation process. With these languages, performance models can

be quickly and easily constructed, evaluated and verified. Simulation environments are

becoming more graphically oriented with the recent widespread availability of inexpensive

graphic workstations. By displaying performance models pictorially, evaluation has been

quickened and simplified.

In this thesis, a graphic viewing system that can be interfaced with a complex sim-

ulation environment to provide a real-time display of various system activities has been

developed. Currently the system is linked to CSIM [1], a process oriented simulation lan-

guage based on the C programming language. The interface to the simulation language

is set up such that the graphics are not directly dependent on the simulation language.

2

The CSIM simulation languagewasslightly modified to interface with the graphics. To

use this viewing package,a CSIM simulation is written with a few extra instructions for

the initialization of the graphics. The CSIM simulation is executed, as usual, and two

additional files arecreated, generatingthe graphics information. Using the information

in these two files, the simulation can then be viewed in real time. In this context, real

time refers to the simulation time. By displaying the simulation in real time, flaws and

benefits of complex systemscan often be seenthat are not always noticed in the final

statistics.

The current version of the graphic viewing system usesXll windows running on a

Sun workstation. The graphicsare generatedwith the InterViews graphics libraries in

C++.

This thesisis organizedasfollows. Previous work done with graphics oriented simula-

tion environments will be discussed in Chapter 2. A high-level look at the design of this

graphic viewing package, including the window and menu interfaces, will be discussed in

Chapter 3. In Chapter 4, a more detailed look at the design of the viewing package will

be discussed, including the data structures design. In Chapter 5, a load balancing algo-

rithm simulation will be presented. Finally, some conclusions about this graphic viewing

package will be made in Chapter 6.

3

CHAPTEK2

BACKGROUND

2.1 Previous Work

The need to simplify the design of complex simulation models has spurred research

in graphically based simulation environments. Browne, Neuse, Dutton and Yu [2] de-

signed a system which graphically simulates generalized queuing network models. This

system allows users to graphically design complex systems, including computer and com-

munications systems, by combining a specialized programming system and a graphical

methodology. The Performance Analyst's Workbench System (PAWS) language eases

the creation and evaluation of queueing network models. Information Processing Graphs

(IPGs), a graphical methodology for modeling, is a directed graph where the nodes repre-

sent devices/resources and the arcs represent workloads flowing among the nodes. IPGs

and the PAWS programming system were developed in conjunction with each other. A

graphical editor is used to create the IPG by placing nodes, connecting the nodes with

4

arcs and assigning specifications for the nodes and arcs. From the IPG a PAWS program

is generated and the model can then be executed.

Kurose and Gordon [3] designed a high-level interactive, graphics-oriented system

based on the RESearch Queuing package (RESQ). The RESQ simulation language [4] is

a special-purpose modeling language similar to PAWS. With this system, the model is

also created with a graphics editor. Icons that have specific graphical.semantic definitions

of some element of the simulation model are placed in the modeling area. Each instance

of all icons has textual attributes assigned to it. The icons are connected together with

lines representing the routing of jobs. A RESQ model is created from the graphical

J

representation and is executed. The user can view graphically all of the performance

measures of the simulation.

Melamed [5] created an interactive animated simulation package for queueing net-

works called the Performance Analysis Workstation (PAW). The PAW system simulates

queueing networks with a discrete event simulation system. With a graphics editor, the

user draws the nodes of the network and specifies the topology by connecting the nodes.

The model is parameterized with a text editor by filling in captioned fields of forms.

With forms, the user no longer needs to know any syntax. The actual simulation is

executed by a Monte Carlo simulator. The simulation can be examined event by event.

The PAW system animates the screen with the transfer of transactions between nodes

and the creation and destruction of transactions. This feature is mainly used to verify

5

the validity of the model. When the model is determined to be valid, the animation is

not required and only the final statistics are collected.

2.2 Graphic Viewing Package

The emphasis of the graphics in the systems discussed in the previous section has been

on the input of the simulation model and the output of the simulation statistics. The

analysis of the models mainly consists of the final statistics of the entire simulation which

are displayed graphically. Unlike the systems described above, the graphics environment

described in this thesis uses a separate simulator, for example, CSIM. The simulation

details are sent to an output file which is used as input to the graphics environment to play

back the progress of the simulation in real time. This is somewhat similar to the PAW

system, but the system described in this thesis displays a variety of statistics in simulated

real time as well as the transfer of transactions and communications between nodes. This

allows the user to evaluate the performance at specific times of the simulation, not only

at the end of the simulation. Several levels of detail can be viewed as in the PAW system,

but the more detailed levels are not only used for validation of the model, but also in the

- evaluation of the model.

CHAPTER3

USER INTERFACE

The graphic viewing package developed in this thesis can run with minimal interven-

tion from the user, but an interface was built to allow the user to dynamically customize

the simulator display to view specific areas of interest. The general flow of the viewing

system is shown in Figure 3.1. All figures appear at the end of the chapter. First the

initialization file is read and the simulation is initialized. Once the simulation starts to

execute, the user has a choice of opening more detailed windows or altering the view of

any window. Initially, only one window is open but up to four more can be opened. All

commands are menu-driven via the mouse. If there is no user command pending, the

simulation reads data from the log file and updates the graphics display.

3.1 Windows

A total of five different windows are in this graphic viewing system. Each window

displays a different level of detail of the simulation. The window hierarchy is shown in

7

Figure 3.2. The available levels are the network level, the physical level, the selected

physical level, the detailed level and the selected detailed level.

The network level is considered the main level because it is always displayed, and

because of its versatility since almost all of the simulation data can be viewed from

this level. It is the only window that is dependent on the architecture specified in the

initialization file. Currently there are three different architectures supported: single-

bus, a 16-node hypercube and no-connection. An example of a single-bus architecture is

shown in Figure 3.3 and an example of a hypercube architecture is shown in Figure 3.4.

The no-connection architecture is very similar to the single-bus architecture except no

connections are shown between the nodes.

Each node can contain a variety of different facilities such as CPUs, disk drives, tape

drives, etc. Each facility can have multiple processes running on it. Each process can have

multiple mailboxes receiving communications from other processes. Facilities, processes

and mailboxes are each represented separately as graphic objects. Within each node of

the network level window, any of the facilities, processes or mailboxes contained in that

node can be displayed. The object that is displayed can be selected from the node menu

which will be discussed in more detail in Section 3.2.2.

All inter-node communications can be shown at the network level. In the initialization

file, the user defines the message types that will be used in the simulation up to a

maximum number of five. Each message type is assigned a color or pattern and is

displayed on the left side of the network level window. In Figure 3.3, only three different

8

messagetypesare definedby the user thus only the three different patterns aredisplayed

with the correspondingmessagetype names. In Figure 3.4, all five messagetypes are

defined.

The physical level and the selected physical level display all the facilities in the entire

simulation and the facilities of selected nodes, respectively. For the selected physical

level, the nodes are selected in the network level window by using the node menu. This

is useful for viewing only one node or a few specific nodes. An example of a physical

level window is shown in Figure 3.5.

The detailed level, as the name suggests, displays the most details of the simulation.

All of the facilities, processes and mailboxes and all communications are displayed. Unlike

the network level, this level can show all intra-node communications as well as all inter-

node communications. The selected detailed level, like the selected physical level, displays

only the facilities, processes and mailboxes of selected nodes. The communications that

are displayed in the selected physical level can originate and terminate in nodes that are

not selected and therefore not displayed. In this case the messages are shown heading

towards the edge of the window. A history of the last four messages is shown in this

level. The message types are also coded by the same color or pattern as in the top

level. In Figure 3.6, an example of a detailed level window is shown. This example has

a single CPU in each node. The last three messages are shown to be originating from

node number one and are the same type.

9

All of the windowshavea status box madeentirely of text at the top of the windows.

The status box displays the name of the window, the namesof the initialization and

log files, the simulation clock, the communication status, the pausestatus, and up to

two possible simulation messages.The communication status refers to the display of

communicationsin that window. If the communicationsare setto on, all of the messages

are displayed, and conversely,if the communicationsareset to off, none of the messages

are displayed. This feature applies only to the network, detailed and selecteddetailed

levels since these are the only windows that display communications. In Figure 3.3,

information in the status box canbe interpreted asa network level window with lbal.init

and lbal.log as the initialization and log files, respectively. The communications are

currently on, the simulation clock is at 15.0and the simulation messageis nd: 0 zfe.r job

isego4.

The amount of information to display can become larger than the screen size, es-

pecially in the detailed windows. For this reason, all the windows have vertical and

horizontal strollers along the right and bottom sides of the window. By holding down

the middle button of the mouse on a scroller, the user can change the view of the win-

dow. The white box inside the gray box represents the current view relative to the entire

virtual view. For example, in Figure 3.5, the white part of the horizontal scroller covers

half of the entire scroller and is positioned against the left side. This means the current

view is of the leftmost half of the entire virtual window and to the right, the undisplayed

portion of the window is about the same size as the portion currently viewed. Similarly,

10

the vertical scroller shows that currently only about a fifth of the entire virtual window is

being displayed. The windows are automatically sized according to the number of objects

to be displayed. If there are too many objects in a window to be displayed on the screen

at the same time, the window is sized so that the entire window is shown on the screen

and the user may scroll around to see the rest of the window. All of the windows may

also be resized using regular X-windows commands, but the image inside the window

does not shrink or enlarge along with the window.

3.2 Menus

The menus are hierarchically organized in the sense that a submenu appears after

selecting most of the top-level menu commands. Two different top level menus are

available. The main menu can be selected from anywhere on the screen and provides

a majority of the user interface. The node menu is available only in the network level

window by clicking the mouse on a node. Each menu and its respective submenus are

described in detail in the following sections.

3.2.1 Main menu

Most of the dynamic changes in the simulation are done with the main menu (shown

in Figure 3.7). The main menu is obtained by pressing the right mouse button down

anywhere on the screen and holding it down. Selections are made by dragging the mouse

to the desired selection and releasing the button. The first selection in the main menu is

Pause. This toggles the pause feature. Selecting this when the simulation is running will

II

cause the simulation to stop untilthis selectionismade again. This isuseful in closely

examining the detailsof the simulation and reconfiguring the dynamically changeable

parameters of the simulation.

The second choice, SelectSpeed, displays the dialog box shown in Figure 3.8. This

dialog box isalso displayed at the beginning of the simulation in order to pick the initial

speed of the simulation. The simulation speed can be changed throughout the entire

simulation. Differentspeeds are attained through nested delay loops. The fastestspeed

does not go through any delay loops.

In allthe windows except the network levelwindow, the facilitiesdisplay the mean

queue length, utilization,mean response time and mean service time graphically with

bars. Since the values of the mean queue length, mean response time and mean service

time can be anything from a very small to a very large value,the ranges for each of these

metrics can be specifieddynamically by the user. The ranges can be changed through

the main menu selection,SelectRanges. There is no need to change the range for the

utilizationbecause the value willalways be between 0 and 1. A submenu is displayed

(Figure 3.9),allowing the user to choose the metric whose range isgoing to be changed.

A dialog box isdisplayed for both the high and low values.The dialog box for changing

the high mean queue length value isshown in Figure 3.10. For allof these dialog boxes,

the cursor needs to be in the dialog box in order for the keyboard input to be read. If

the number ishighlighted,anything typed on the keyboard willreplace the old number.

12

To highlight the number, just drag the mouse over the number using any button. After

changing the ranges, all the facilities will be updated with the new ranges.

Any or all of the windows can be redisplayed with the Redisplay Windows. The

submenu shown in Figure 3.11 allows the user to choose a single window or all of them

to be redisplayed. Since the network level window is the only window that is always

displayed, a user can pick a window that is not currently open. Nothing is redisplayed

when an unopen window is selected.

To turn off the communication messages, select the main menu entry Comm. On/Off.

The submenu shown in Figure 3.12 will be displayed. Each window that has commu-

nications can have its messages turned off individually. This allows the user to see

communications in one window and not in another if desired. Turning off the communi-

cations can greatly speed up the simulation. Again, a window can be chosen that is not

currently open. In this case, turning off the communications will have no effect.

To open or close any window except the network level window, select Open/Close

Windows jn the main menu. A submenu will appear (Figure 3.13), listing the four

different windows available. Selecting a window will toggle that window's status. For

example, if the physical level window was not open, selecting the physical window would

open it. Otherwise, if it was already open, it would close. The network level window is

always displayed; therefore it cannot be opened or closed.

The method for exiting the graphic viewing package is provided in the main menu.

Select Ezit and all of the open windows will be closed.

13

3.2.2 Nodemenu

w.

The node menu operates on only one node at a time. For example, if there are

multiple nodes in the network level window, and the cursor is moved to a particular

node, pushing the left mouse button displays the node menu. All of the functions of

the node menu would then operate only on the node that was clicked upon. The node

menu (Figure 3.14) serves two purposes. First, the user can select the facility, process or

mailbox, which is contained in that particular node and which is to be displayed in the

network level node. Second, the user can select nodes for inclusion in either the selected

physical level window or the selected detailed level window.

Selecting Facilities, Processes, or Mbozes, causes a submenu listing the names of all

the facilities, processes or mailboxes contained in that node to be displayed. Each node

will have unique submenus. Selecting one object will cause that object to be displayed in

the node at the network level. An example of a facilities submenu is shown in Figure 3.15.

14

Read

Initlslization
File

Build and Check
Dsta Structures

. $.

Read Log

File

Proem
Mouse
Event

Figure 3.1: Program Flow Chart

15

Network LevelCommunication_

I
I I L I

No Comm,,._tio.. I NoComm_tio,.,, I Comm_c.tio_ [Com=,_.*tio,.

Figure 3.2: Window Hierarchy

:i:i:.>.i:!:_:::i:i:'::_:_!:!._:i

_°ltv

r.,.,.,: ON C1_k:1$.¢00000
rim)/.: rid: 0]dre- j,'*,1_S04

Figure 3.3: An Example of a Single Bus Network Level Window

16

Figure 3.4: An Example of a Hypercube Network Level Window

17

Ph_l_] lJwl Init file" ta_,a|l.inlL L_ _ll#: tastall.lo9
Cam: 011 Clock:

NodlO

,Q,o.® ,.®, _,o,oo ',®, m,°,® ,,oo, ,aP,_ ,,® ,q,o,® ,,oo _p,® ,,oo,
0.00 0.00 0.00 0.00 0.00 0.00

u ,o.® 1.®, , ,o,® _,oo, u P,® _,®, o',°._ 1.oo u ,o.® 2.®, . o.® :.oo,
o.® , o,®o.oo , ,o,®°'® , o,oa°'°° I o,oo°'® ' ,o,®°'®m o,_ s,_ _ _,_ m _,_ m s,_, _ _,_, m s,_,
o.oo o.oo o.oo o.oo o.oo o.oo

iS 0,00 $,00 _S OtO0 _itO0 0,00 S_O0 . , MS . ,• , , MS , 16 0,00 _,00 IS 0,00 _,o0 0,00 S,00
0,_ 0.00 0_ OtO0 0.00 0_0

e
,0T00 4,00 ,

0.(_

U -,°t00 it00 ,
0.00

-_,00 St00 ,
0.00

0_00

Figure 3.5: An Example of a Physical Level Window

i1-4 ¥i]nit. file:/u_/rourdq_m_/c_lm/aamle/SW]b_l._/II_l._t L_ Fll_/_'_'e_wd_01mll_tm/ml_'_tlbal._'lb_l.la9
_---: ON !_LEE! Clo_: 7.S77_

m_
1.10

030

OA8

0.12

• " •
0.40 O.l#

0.40 O.S#

0._ 0,20

0

_da0S(1J

°...._.__ °

_ort

PINS

1 !

e(7_03]

1._0

0.?0

0_0

0.I_

0

o

eOqJ(o,U

.

o.®

_.®

0._

....... .111

Figure 3.6: An Example of a Detailed Level Window

18

P_

Select

SelectRenges

Redi_la9 Mindows

Com. On/OFf

Exit

Figure 3.7: Main Menu

Select Simulatlo_Speed

01 - Fastest

02

03

04 - Slo_est

Figure 3.8: Speed Selection Dialog Box

Mean Q I.e_:ut_ Range]

__._ [
Heart Set. Range [

Figure 3.9: Select P_nges Submenu

19

High Heart Q Length Value

I
(_ j (_lJ

Figure 3.10: An Example of a Range Selection Dialog Box

RII Windows

NetworkLevel

Phg$icalLevel

5electedPhg._IcalLevel

DetailedLevel

Selected Detailed Level

Figure 3.11: Redisplay Window Submenu

Network Level

DetailedLevel

Selected Detailed Level

Figure 3.12: Communications On/Off Submenu

2O

I PhgslcalLevel

SelectedPhysical Leveli

l)etailed Level

Selected l)etailed k_lll

Figure 3.13: Open/Close Windows Submenu

I I)ISI:L.qY I

Select This .odaI

Figure 3.14: Smallnode Menu

m

mi8¢

m

disc

tape

lo

m

Figure 3.15: Smallnode Facilities Display Submenu

21

CHAPTER4

DESIGN

The developmentof this graphic viewing package is based on InterViews [6], a graph-

ical user interface toolkit. InterViews is a library of C-t-+ [7] classes that define common

interactive objects and composition strategies. The InterViews classes are based on the

X windowing system, but the developer is totally removed from any interaction with the

X windowing system. The application's user interface is defined in terms of InterViews

objects, which communicate with the windowing and operating systems.

InterViews provides three different types of objects: interactive type objects such as

menus and buttons, structured graphic type objects such as circles and polygons, and

structured text objects. New classes were created for this simulator by deriving them

from the base classes provided by InterViews. The new classes are discussed in detail in

the following section.

22

4.1 Classes

A majority of the derived classes are the interactive type, derived from the InterViews

class Scene. This base class provides member functions called Redraw, Resize, Reconfig

and Handle that are used in the derived classes. Redraw is used to draw all of the

graphics in that object by calling InterViews routines to draw lines, rectangles and other

geometric objects at specific locations. Resize recalculates the locations of the graphics

in the object if the object size happens to be changed. Reconfig determines the object's

size, stretchability and shrinkability. Handle takes care of all the key and mouse events.

All of the graphic classes derived from Scene use derived versions of these routines. One

advantage of a Scene derived class is the ability to insert other graphics objects into

it. For example, two Scene derived classes in InterViews are HBox and VBox. When

multiple objects are inserted into an HBox, they form a horizontal row of objects. The

VBox class creates vertical rows of graphic objects. Together, the HBox class and the

VBox class can be used to construct complex graphic displays. This is how the windows

are created.

The main class is called Idraw 1. As far as the graphics and the user interface is

concerned, Idraw creates the Network level window and handles the main menu mouse

inputs. Idraw also takes care of some non-graphic tasks, such as reading in the initial

simulation structure, building the data structures and checking the correctness of the

simulation structure.

1The name Idraw came from a program written in InterViews on which the structure of this simulator

was originally based. Now the two Idraw classes barely resemble each other.

v

23

A new class was derived for each of the additional windows. These classes are con-

structed when the user requests a new window to be added through a mouse operated

menu.

Several classes were derived which represent different types of CSIM objects. Each of

these classes has a special member function called Updatedata. This routine updates all

of the data in the object without redrawing the entire object. In other words, only the

data that axe being updated axe redrawn. This is to speed up the updates and reduce

the flashing effect on the screen.

The Facility class is an interactive graphics object that displays information on CSIM

facilities. The Facility class was subclassed into specific types of facilities such as CPU,

disk, tape, memory, etc. An example of a CPU facility is shown in Figure 4.1. Facilities

display mean queue length, utilization, mean response time, mean service time, and also

a little icon depending on the specific facility type. All of the different available facility

types can be seen in Figure 3.5.

The Process class represents a process that runs on a facility in the same way as a

CSIM process. An example is shown in Figure 4.2. Processes belong to a certain facility

and display four flags and a queue. The four flags axe independent binary flags that the

user can set or reset individually or as a group. The meaning of these flags is determined

by the user. Processes generate all of the communication messages in the simulation.

24

The lastclass that is directlyrelated to a CSIM object is Mbox. Figure 4.3 shows

an example of a Mbox. Mboxes represent mail boxes that receive communication mes-

sages. They belong to a Process and displaya queue which representsthe communication

messages that have been received and are waiting for processing.

The network view window has a specialgraphics classthat representseach node called

Srnallnode. Each Smallnode can display any facility,process or mbox that is contained

in that node. An example of a Smallnode displayinga facilitycalled cpu[00] isshown in

Figure 4.4. The user can dynamically choose which object to display through a mouse-

driven menu.

All of the windows which display communication messages have special communi-

cation classes. In the network level,these classesdisplay the connectivity of the nodes

along with the transferofmessages. The messages are eithercolorcoded on colorsystems

or pattern coded on black and white systems for the differenttypes of messages. The

methods used for displaying communication messages are discussed in more detaillater

in thisthesis.

4.2 Data Structures

The data structures are designed to allow fast updates of the graphics and also retain

the structural dependence. For fast graphic updates, pointers are needed for each graphic

object. An easy method for obtaining the correct pointer for each object is also needed.

This is accomplished by using hash tables for the facilities, processes and mailboxes. The

25

objects are hashed on their ID number and the hashing algorithm is a modulo arithmetic

approach. The ID number modulo the size of the hash table results in the hash table

entry number. Each hash table entry is a linked list of graphic objects. The next pointer

of the linked list is built into each graphic class. Therefore, in the case of collisions, a

linked list is traversed to find the correct graphic object. A graphic object is created for

each facility, process and mailbox despite the fact that at the onset of the simulation they

are not displayed. These original graphic objects are used in the detailed window and

they always exist. They contain all of the up-to-date information, e.g., facility utilization

and mean queue length, process flags, mailbox queues, etc. When the detailed window is

created, these original objects are used and inserted into the window. For all the other

new windows, new auxiliary graphic objects are created, the vital information is copied

into the new objects, and they are then inserted into the new window. Pointers to the

new objects axe kept in the original graphics object. These auxiliary objects are deleted

when the window is closed. When updating the data, the original objects are updated

first, then, if any other windows are open, the auxiliary objects are updated.

The smallnodes used in the network level are linked directly to the original graphic

objects by pointers. The original graphic objects provide the simulation data needed

to. be displayed by the smallnode. This is how the different objects can be displayed in

the same node. When a different facility, process or mailbox, is chosen to be displayed,

a special pointer is set to the correct graphic object so that the smallnode can obtain

the data needed for display. Therefore, the smallnode actually contains no data in itself.

26

It gets everything from the original objects. Thus, to update the simulation data, the

original objects are updated first and then the smallnodes are redrawn. The new data

will be used when the smallnode is redrawn.

The original graphic objects also contain the structural dependence information. Each

node has a linked list of facilities that are contained within that node, each facility has

a linked list of processes that are contained in that facility and lastly, each process has a

linked list of mailboxes in that process. Also, in the graphic objects are the ID numbers

of its structural parent. For example, each process has its facility's ID number and its

node number.

The original graphic objects are created from the initialization file. The structural

dependence is checked to see if there are any contradictions. For example, a mailbox

may belong to a certain process in node A, but the initialization file may say the mailbox

belongs to node B. If there is a discrepancy, a warning is printed and the data structure

is modified to a point were the contradictions are eliminated.

4.3 Communication Messages

Communication messages are displayed at two different levels: the detailed level and

the network level. The network level communications are dependent upon the archi-

tecture type while the detailed level communications remain the same regardless of the

architecture.

27

4.3.1 Detailed level

In the detailed level, the messages always originate at a process and arrive at a

mailbox. There are three different types of graphic objects used to display a message.

First, there is the message origination point called a Port. The remaining two graphic

objects are vertical and horizontal communication objects called Vcomm and Hcomm,

respectively. The vertical communication objects run vertically next to the mailboxes,

processes and ports. The horizontal communication objects are in a single row at the

bottom of the window, connecting all of the different facilities. An example of the

placement of the graphic Objects can be seen in Figure 4.5.

In order to quickly draw messages, a method was needed to obtain pointers to the

necessary communication objects. Thus, each process object has a pointer to a port

object and each port has a pointer to a Vcomm object. A column of Vcomm objects

is actually a linked list. Therefore, when a message is going to a different facility, the

column is traversed until the end, drawing the message. Each Vcomm object may also

be addressed by its adjacent mailbox. In other words, every mailbox has a pointer to the

Vcomm object directly to the right of it. This is to facilitate the termination of messages.

The Hcomm objects are used only when a message is sent to a different facility. An

array of Hcomm objects is created after the total number of facilities is first known. The

size of the array is four times the number of facilities in the simulation. Half are used for

the detailed window and the other half are used for the selected detailed window. For

every facility, an Hcomm object is used under the processes and another is used under

28

the mailboxes. By knowing the column of the originating facility and the column of the

terminating facility, the message can be drawn on the proper Hcomm objects.

4.3.2 Network level

In the network level, aU the communications are dependent upon the architecture

type. The single bus and the unconnected architecture types are considered the same as

far as communications are concerned, meaning the messages are drawn the same. The

only difference is whether or not the bus is drawn. Therefore, presently, only two different

types of communications exist in the network level: single bus and hypercube.

The single bus mess.ages are relatively simple. There are basically two different types

of communication objects, a vertical one and a horizontal one called Vtopcom and Htop-

corn, respectively. A Htopcom separates two rows of nodes. There are always an even

number of rows except when there are less than four nodes. In this case, there is only one

row of nodes. An example of a sixteen-node layout is shown in Figure 4.6. The Htopcom

knows how many nodes are connected to its top side and to its bottom side. The Vtop-

corn objects connect multiple Htopcoms. By knowing the columns of the originating and

terminating nodes, and the originating and terminating Htopcom objects, a message can

easily be drawn.

The hypercube network is more complex and is limited to the sixteen-node case. Only

one type of communications graphic object is used: Tophcom. The different Tophcom

objects are differentiated by their ID numbers. The placement of the Tophcom objects

and the smallnodes are sho'#n in Figure 4.7. Using the ID numbers, the size and location

29

of the Tophcomobjects is known. This information is usedto draw the connectionsand

the messages.Since messagesmay have to traversemany different graphic objects, a

method wasobtained to identify paths from node to node. In each smallnodeobject,

two arrays of sixteen pointers to Tophcom objects exist. One array points to the first

Tophcom object in the path to a certain node and the other points to the last, called

startcom and endcom, respectively. For example, for the path from node 4 to node 12,

the twelfth entry in the startcom array in smallnode4 would contain the pointer to the

first Tophcom object (Tophcom 9) in that path. The array entries that correspond to

the nodes that are not directly connected to this node are set to nil. The Tophcom

objects are connected in linked lists dependingon which path is desired. There exist

thirty-two unique paths from node to node. The path traversal always originates from a

lower numbered node and terminates at the higher numbered node. In order to draw a

message, only a linked list needs to be traversed. A Tophcom object knows from its ID

number and the node-to-node path where to draw a message.

4.4 Faults

The simulator can display two different types of faults. The first is a facility fault

and the second is a node fault. Both fault types are.displayed in the network level as an

"X" across the entire node. The two types of faults are differentiated by either color or

pattern. A node fault is either red or solid black, while a facility is either green or gray.

3O

In the physical and detailed level windows, the facility fault is alsodisplayed. It is also

drawn as an "X" across the entire facility in either green or gray.

31

©cpu[O0]

0.00

U -u_O0 1,00 ,
0o00

HR -_tO0 5,00 J
0.00

HS -_tO0 5,00 .

0_00

Figure 4.1: An Example of a CPU Facility

IF"
F1

0

Figure 4.2: An Example of a Process

abaxO

0

Figure 4.3: An Example of an Mbox

32

ci:,u[0o] o
UQ

oOU
0.00 0

Figure 4.4: An Example of a SmaI1node

Port

Proce_

Mailbox

Hco_

Vcol00_[l

V¢on'll'n

I-I£o_

Figure 4.5: An Example of Detailed Level Communication Graphic Object Placement

33

Vtopcom

Vtopcom

Vtopcom

Vtopcom

Vtopcom

Node 0 Node 1 Node 2

Htopcom

Node 4 Node 5 Node 6

Node 8 Node 9 Node 10

Htopcom

Node 12 Node 13 Node 14

Node 3

Node 7

Node 11

Node 15

Figure 4.6: Network Level Single Bus Communication Graphic Object Placement

34

Tophcom0
Node

12

| |

Tophcoml

Tophcom 2

Node

13

Node
8

Tophcom 3

Tophcom 5

Node

9
Tophcom 4

Tophcom6
Node

0
Tophcom7

Node
1

Tophcom 8

Tophcom9

Tophcom I0 Node Tophcom 11 Node
4 5

Tophcoml2

Tophcom14

Tophcom13

Node Tophcom 15 ' Node Tophcom 16

2 3

Tophcornl7

Node Tophcom 19 Node Tophcom 20
Tophcom 18 6 7

Tophcom21

Node
Tophcom22 Node Tophcom23 15

14

Tophcom24

Node Tophcom 26Node Tophcom 25
10 11

Figure 4.7: Network Level Hypercube Communication Graphic Object Placement

35

CHAPTER5

A LOAD BALANCING SIMULATION

Load balancing is a method of spreadingout the loadamong many different nodesin

a distributed system. The main objective is to reducethe responsetime of the overall

systemby movingjobs from heavily loadednodesto lessheavily loadednodes. Of course

there are tradeoffs involved, such as the communicationcosts of sending system status

information to all the nodesand transferring jobs from nodeto node. Many different load

balancing algorithms exist but a simple one waschosenas an example of this graphic

viewing package'scapabilities.

The load balancing algorithm in this example runs on each individual node. Each

node decides,when a newjob is createdat that node, whether or not to movethe job to

another nodeor processthe job at that node. The algorithm makesits decisionbasedon

what it thinks is the sizeof eachnode's presentmeanqueuelength. Periodically, a node

will broadcast its own mean queuelength to all the other nodes. The tradeoff with this

algorithm is the cost of frequent broadcastsversusup-to-date information about each

36

node. With moreup-to-date information about eachnodea better decisioncan be made

asto whether or not to transfer a job, and if the job is transferred, which node should it

be transferred to. More details about this load balancingalgorithm can be found in [8].

This example ismadeup of ten regularnodesand onegeneralnode. The generalnode

(Node 10) is a specialnodefor this simulation that doesnot exist in reality. It represents

the work load generator for all the other nodes. Jobs are created in the general node

and are sent to a nodedeterminedby a uniformly distributed random process.The work

done by the general node usesno resourcesand doesnot affect the simulation. From a

regular node's point of view, jobs arebeing created insideof itself. In Figure 5.1, a job

is being created in the general node and sent to Node 9. When a node broadcasts its

mean queue length to all the other nodes, it is displayed as many different messages, all

of them originating from one node. One broadcast message, originating from Node 7, is

shown in Figure 5.2. Figure 5.3 shows a job being transferred from Node 8 to Node 0.

The algorithm is working correctly because Node 8 has a mean queue length of 3 and

Node 0 has a mean queue length of 0. On closer inspection, it can be seen that Node 9

has a mean queue length of 0 and a utilization value of 0.0 while Node 0 has a utilization

value of 0.4, indicating that Node 9 would probably be a better choice than Node 0.

As the simulation progresses, it is quite obvious that this load balancing algorithm is

not very effective. Figure 5.4 shows Node 6, Node 8 and Node 9 with mean queue lengths

of almost 2 and a utilization values of almost 1.0, while Node 3, Node 4 and Node 5 have

mean queue lengths of 0 and utilization values of 0.0.

37

By displaying this simulation graphically, it wassimple to verify that the algorithm

wasworking correctly. It wasalsoquite obviousthat the algorithm was too simplistic to

provide effective load balancing.

38

°

m
f_

Figure 5.1: Arrival of a New Job

Figure 5.2: Broadcasting a Mean Queue Length

4O

PhysicalL_el InitFile:lu_r/roundup/kgo=uamilc_im÷lexzmplelgp/Ibel_ex/Ibal.initLog Fi
Co_: OFF PRUSEI Clock:17._38567

Mesg.l.:
Mes92:

Node0 Node1

CPU[00] CPU[OI]

0.00 4.00 0.00 4,,00

0.90 0.00

U 0.00 1.00 , U ,0"00 1.00
0.33 0.00

MR0_.00 5,00, MR0.00 5,00
0.23 0.00

Mso.® 5,00 Mso.oo 5,oo
0.08 0.00

N_2 _e3

CRJ(02) CPtI[03]

o.,00 400 ,Q000 ,oo
0.20 0.00

U 0.00 1.00 0.00 1.00m I U I I

0.20 0.00

o,00 5.00 _ ,°.00 5.00I I

0.20 0.00

0.00 5.00 0.00 500MS l
0.20 0.00

_e4 Node5 _e6 _e7

CPU[04] CPU[05]

o.00 ,.00 ,o.00 4.00I It] i
0.00 0.00

0.00 1.00 0.00 1,00
U I , U i J

0.00 0.00

MR0,00 5.00 HR 0.00 5.00I I

0.00 0.00

MSiO,O0 5.00 0.00 5,00i MS
0.00 0.00

_e8 Node9

CPU[08] CPUCO9]

I_ 0.00 4.00 0.00 4,00i HQ i
1.85 1.90

U 0.00 1.00 U 0.00 1.00

0.98 1.00
0.00 5.00 0.00 5.00

0.14 0.38
0.00 5.00 0.00 5.00

MS_ MS_
0.08 0.38

CPU[06] CPU[07]

I'_ 0.00 4,.00 : I'_ 0.00_ 4.00
1.88 0.60

U 0.00 1.00 0.00 1.00, U
0.33 O.EO

,_0.00 5.00 o..00 5.00
0.16 0.20

,s0,00 5,00 0.00 5.00I MS . i

0.08 0.20

i!iiiiiiiiiiiii!iii!!!iiiiiiii!iiii!ii!!!!i!iii!ii!iiiiiiiiii!iiiii!iiiii!i!iii!ii_!ii:_iii!iiiiii_ii!!iiii!_!_!!i

Figure 5.4: Load Balancing Physical Level

39

Hn_ l.tn4|lintfile: /we/r_m_tamnt/mi_¢_A_lo/_Ibal.u/lbal.l_It Log file:/une/o._i/_la_/q_c_le/gl_lbal.I_/lbal.log

::_:_:::;:,::_::::_C_it: ON I_1 Clock: 12.110EL_

,_:i:i:;+;i_:_:i_:_:_: +_qi2.=

_,.,,,+ _; o,,.ou = omt+mz "_m + auto+]+ _tom s7
I uo uo uo : uo uo uo I+o+U o++ oUU o+U o+U []IU+

_ton +' omt+e] s I Omm] s sm to
UO UO UO UO F1Q

OU oOU [] I_ o OU: []oU
0.50 0 , 0.40 0 1.00 $ O.O0 0 0

Figure 5.3: Transfer of a Job

41

CHAPTER6

CONCLUSIONS

In this thesis,agraphicviewing systemthat canbe interfacedto a complexsimulation

environment is described.The viewing systemis currently linked to the CSIM simulation

language.After developinga CSIM simulation, the simulation canbeplayedback to show

the progressof the simulation in real time. Analyzing the simulation in real time can

give a more realistic view of the true behavior of the system. Someof the simulation

features that can be viewedare the communication messages,the mean queue length,

utilization, mean responsetime and mean servicetime of the resources,and message

queues.Presently threedifferent architecture typesare supported: singlebus, hypercube

and unconnected.

In the future, this graphic viewing packagecould be expandedto handle more ar-

chitecture types. Also, additional functionality could be added to the simulator's clock

feature, e.g.,allowing breakpointsto beset, and allowing the simulation time to bemoved

forward or backward.

42

REFERENCES

[1] H. Schwetman, "CSIM: A C-based, process-oriented simulation language," in Winter

Simulation Conference, IEEE, 1986.

[2] J. C. Browne, D. Neuse, J. Dutton, and K. C. Yu, "Graphical programming for

simulation of computer systems," in Simulation Symposium, IEEE, 1985.

[3] J. F. Kurose and K. J. Gordon, "A graphics-oriented modeler's workstation environ-

ment for the research queueing package (RESQ)," in Fall Joint Computer Conference,

IEEE, 1986.

[4] C. Sauer, E. MacNair, and J. Kurose, "RESQ: CMS user's guide," Research Report

RA-139, IBM, Yorktown Heights, N.Y., April 1982.

[5] B. Melamed, "The performance analysis workstation: An interactive animated sim-

ulation package for queueing networks," in Fall Joint Computer Conference, IEEE,

1986.

[6] M. A. Linton, J. M. Vlissides, and P. R. Calder, "Composing user interfaces with

interviews," IEEE Computer, vol. 22, pp. 8-22, February 1989.

[7] B. Stroustrup, The C+4- Programming Language. Reading, Massachusetts: Addison-

Wesley, 1986.

[8] K. Goswami, "Load sharing base on task resource prediction." M.S. thesis, University

of Illinois, Urbana, IL, 1988.

